
4th International Conference on Mechanical Engineering, December 26-28, 2001, Dhaka, Bangladesh/pp 185-194 

Keynote Paper  185 

Keynote Paper 
 

TURBULENCE MODELS IN SUPERSONIC FLOWS 
 

E. Shirani1, H. Ahmadikia2, S. Talebi3 

 
1. Professor of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran, 

Associate member of Abdus Salam International of Theoretical Physics 
2. Assistant Professor of Engineering, Bu-Ail Sina University, Hamadan, Iran 

Young Collaborator of Abdus Salam International of Theoretical Physics  
3. Assistant Professor of Engineering, Yazd University, Yazd, Iran 

 
Abstract  The aim of this paper is to evaluate five different turbulence models when used in rather 
complicated two-dimensional and axisymmetric supersonic flows. They are Baldwin-Lomax, k-l, 
k-ε, k-ω and k-ζ turbulence models. The compressibility effects, axisymmetric correction terms and 
some modifications for transition region are used and tested in the models. Two computer codes 
based on the control volume approach and two flux-splitting methods, Roe and Van Leer, are 
developed. The codes are used to simulate supersonic mixing layers, flow behind axisymmetric 
body, under expanded jet, and flow over hollow cylinder flare. The results are compared with 
experimental data and behavior of the turbulence models is examined. It is shown that both k-l and 
k-ζ models produce very good results. It is also shown that the compressibility correction in the 
model is required to obtain more accurate results.  

 
Nomenclature 
 
et Total energy Mc Convective Mach number V Free stream velocity 
k Conduction coefficient Me Free stream Mach number xt Transition point 
k Turbulent kinetic energy p Pressure ρ density 
kτ Turbulent eddy diffusivity T temperature µ viscosity 
lt Turbulent length scale Rj Jet radius µτ Turbulent eddy viscosity 
LTS Tolliman-Shilichting length U x-velocity component ν∗  Viscosity at ref. temperature 
LSM Acoustic length scale Ue Free stream velocity   

 
      

1. INTRODUCTION 
 
1.1 General 
Supersonic flows are important in many applications 
including aerodynamics and turbomachinery. These 
flows contain several complicated phenomena such as 
strong curved shock waves and entropy or vorticity 
layers in front of the body, shock waves/boundary 
layers interactions, expansion and compression waves, 
separation and recirculation zones, wake with 
recirculation regions and reattachment points, mixing 
layers. The drag force and also the control and stability 
of a projectile motion depend very much on these 
phenomena. Thus it is important to simulate these kinds 
of flows with care. The Reynolds number in high-speed 
flows around projectile objects is extremely high and 
turbulence effects are remarkable. The proper way of 
handling the turbulence phenomena is crucial for the 
accurate prediction of drag, heat load, inlet efficiency, 
and stability of the projectile. 
 

Turbulent flow is highly vortical, three-dimensional, 
and time dependent. It contains a wide range of length 
scales from as big as the size of the whole domain to as 
small as the Kolmogrov length scale [1]. In order to 
resolve all the scales numerically, the size of grid cells 
must be smaller than the smallest length scale, so one 
should use a very large number of grid points. A 
simulation of this kind, which is called direct numerical 
simulations (DNS), can only be performed on 
supercomputers for simple flows. 
 
Large eddy simulation technique (LES) is another 
advanced numerical simulation of the flow. In this 
technique, the small structures of the flow, which are 
more or less universal and do not depend on the flow 
geometric, are modeled by simple relations and the 
large scales are simulated. The number of the grid 
points needed for this method is smaller, because we do 
not need to resolve small scales. Yet, since the large 
eddies of the turbulent flows are three-dimensional and 
time dependent, the governing equations must be solved 
in a three-dimensional, time dependent form. This kind 
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of calculation also needs high-speed large computers.  
 
   The most practical way of simulating turbulent flows 
thus far is by using Reynolds average idea to filter the 
turbulence fluctuations. In this technique, the Navier-
Stokes equations are integrated over a time interval 
which is larger than the turbulence time scale, but is 
much smaller than the mean flow time scale. Due to the 
non-linearity of Navier-Stokes equations, the so-called 
Reynolds average equations, which resulted from such 
averaging, have some extra unknown terms, the 
Reynolds stresses and turbulent heat diffusion. The 
relation of these quantities in particular with the mean 
flow variables requires the introduction of some 
modellization of these unknown relations, based on 
theoretical considerations coupled to unavoidable 
empirical information. This information is considered to 
be contained in the turbulence models, to be added to 
the averaged Navier-Stokes equations. 
 
   Based on Morkovin [2] hypothesis, for compressible 
flows, the effects of density fluctuation on the 
turbulence structure will remain small for Mach 
numbers below 5 for boundary layers and wakes, and 
below 1.5 for jets, Bradshaw [3]. It implies that the 
turbulence models, based on density-averaged quantities 
will remain valid with the empirical data taken from 
incompressible flow experiments, within these limits of 
Mach number. Yet in compressible flows, some extra 
terms such as velocity-pressure correlation are non-zero 
and must be modeled. 
 
    Many different models ranging from simple zero-
equation models, algebraic models, to second order 
closure models have been developed. The most popular 
turbulence modeling is the first order closure models of 
Reynolds stresses and mean turbulent heat flux by 
means of introducing the concept of the eddy viscosity 
and eddy diffusivity, respectively. This idea is based on 
the original assumption of Boussinsq [4].  The first 
order models can be classified according to the number 
of additional transport equations for the turbulent 
quantities they require. The algebraic models do not 
require any differential equations for the turbulent 
quantities and are therefore the simplest and easiest 
models to use. Models using one or two additional 
differential equations are therefore called one-equation 
and two-equation models, respectively. 
 
   In the second order closure models, transport 
equations for the second-order correlation, the Reynolds 
stress and averaged turbulent heat flux, are deduced 
from the Navier-Stokes equations and the third-order 
correlation terms appearing in the equations are 
modeled as a function of the second order correlation. 
These models are quite general but require the solution 
of a system of transport equations for each of the second 
order correlation terms. The computational effort 
involved is large. The authors believe from their 
previous experience that this complexity can be avoided 

for simple flow configurations by using simpler models 
such as the first order models, which are the center of 
attention in this paper. These models can provide an 
approximation of the influence of turbulent transport 
and diffusion on the mean flow quantities. 
 
1.2. Turbulence Models 
In this section, a literature review for the most 
commonly used turbulence models and some new 
models, which are all based on the eddy viscosity 
model, are presented briefly. The focus is on the 
modifications made for compressible flows and the 
emphasis is on the models that are used in this paper. By 
similarity analysis, the eddy viscosity is a function of 
two variables, turbulent kinetic energy, k and a turbulent 
length scale, l. In two-equation models, two transport 
equations, one for k, and the other for ϕ are solved. ϕ is 
used instead of the turbulent length scale. Its general 
form is ϕ=kn  lm. Depending on the values of n and m, ϕ 
can be turbulent energy dissipation rate, ε, variance of 
vorticity fluctuations, or enstrophy, ξ, the ratio of the 
turbulent energy dissipation rate to the turbulent kinetic 
energy, ω, or turbulent length scale, l.   
 
a. Baldwin-Lomax model 
To the knowledge of authors, The Baldwin-Lomax 
model [5] is the most successful zero-equation model 
which is used for compressible turbulent flows.  This 
model is the modified version of Cebeci-Smith’s [6] 
two-layer algebraic model. It is used and adjusted for 
rather simple flows such as boundary layers and its 
interaction with shock waves. But due to the existence 
of different mean flow length scales, it cannot predict 
the flow accurately in the more complicated flows. 
Shirazi and Truman [7] have studied this model 
extensively. They found that the model produces poor 
results when used for separated flows or flows with 
complicated geometry. Granville [8] and [9] modified 
the model for flow with high-pressure gradient and 
compressibility effects.  
 
b. k-εεεε model 
The majority of the turbulence modeling works that 
have been done in the last thirty years, correspond to k-ε 
models. Launder [10] introduced the model in its 
present form. The k-ε model overestimates the skin 
friction coefficient when applied to the boundary layer 
flows with adverse pressure gradient. In the modified k-
ε model, a source term is added to the ε equation, to 
overcome this problem. Sarkar [11] and Zemman [12] 
have modeled the dilatation dissipation and dilatation 
pressure using DNS results and applied the k-ε and 
Reynolds stress models to simulate simple free shear 
flows and obtained good results.   
 
c. k-ωωωω model  
The k-ω equation is recently tackled by more 
researchers. This model was first used by Spalding [13], 
and then Wilcox [14] modified it. The k-ω equation is 
sensitive to free stream boundary conditions. Huang et 
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al. [15] showed that for incompressible flows with 
adverse pressure gradient, k-ω model produces better 
results than k-ε. Wilcox and Alber [16] used Favre 
(density-weighted) averaged model for compressible 
flows. Rubesin [17] modeled the previously neglected 
extra compressible term in the k equation. Wilcox and 
Rubesin [18] have used the modified Wilcox and Tracy 
model for compressible subsonic flows and got good 
results. Viegas and Horstman [19] tested several models 
for supersonic flow over compression corner and 
showed that the two-equation models of Wilcox and 
Rubensin [18] and Jones and Launder [20] produce 
better results compared to zero-equation models. They 
show that zero-equation models do not predict skin 
friction accurately, and neither of the models can predict 
location of separation points accurately.  
 
   Like the k-ε model, the k-ω model is also modified 
according to Sarkar [11] and Zemman [12] by Wilcox 
[21]. Wilcox [22] showed that these modifications are 
not appropriate for flow over a flat plate. Huang et al. 
[15] modified k-ε and k-ω models using Zemman [12], 
Sarkar [11] and Elbaz [23] compressibility correction 
models. They showed that these modifications are not 
appropriate for predicting the pure Couette flows. 
 
d. k-l model  
Although it seems that the natural way of obtaining two-
equation models is to use k-l equations, but the k-l 
equations has gained much less attention by researchers. 
Rotta [24] and Spalding [13] have derived a differential 

transport equation for length scale, l, and applied it 
successfully to free shear flows. Smith [25] and [26] 
introduced a transport equation for length scale and 
applied it to shear flows with success. Ahmadikia [27] 
derived the k-l model from Saeedi’s et al. [28] k-kl 
model and made some new successful modifications to 
simulate supersonics flows and transition region. Some 
of the results will be presented in this paper. 
 
e. k-ζζζζ model 
In this model, ζ is very similar to ε, but in the ε 
equation, all the terms associated to the large scale of 
the flow are eliminated, whereas in the ζ equation, those 
terms are modeled. So it is expected that the k-ζ model 
produces a better result especially when the local 
Reynolds number is small because in this case the small 
scales are not mean flow independent. Robinson and 
Hassan [29] in 1995 introduced the k-ζ model for 
incompressible flows. They applied the model for free 
shear layers in their paper. Later the model was applied 
to simulate boundary layers, compressible shear flows, 
near wall correction, separated flows and three-
dimensional compressible flows by Robinson and 
Hassan [30], Alexopoulos and Hassan, [31], Robinson 
and Hassan [32], [33], and [34], respectively. More 
recently, Talebi [35] applied the model for more 
complicated compressible flows. Some of his results 
will be presented in this paper. 
 

 
2. GOVERNING EQUATIONS 
Two-dimensional axisymmetric, compressible Reynolds averaged Navies-Stokes equations, which are numerically 
solved in this paper, are as follow:  

where, 
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where, m is equal to one for axisymmetric flows and is zero for two-dimensional flows, and φ is a dummy variable 
and may be ε, ω, ξ, or l depending on which model is used.  
 
3. Turbulence Model Equations 
 
As mentioned earlier, five different turbulence models are used in this paper. The models are as follows: 
 
3.1 Baldwin-Lomax Model 
The algebraic Baldwin-Lomax model is based on the eddy viscosity model and consists of two layers. In the inner 
layer, the eddy viscosity is obtained from Prandtl mixing length and Van Drist damping function. 
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ymax is the location where F is maximum, xy uu −=ω , κ =0.41, K=0.168, 6.1=cpC   and  A+=26.  
To improve the algebraic turbulence models, the eddy viscosity at the wake region is modified as follows: 
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where, max,τµ and maxω are the maximum values of  µτ and ωτ at the center of the body and n=0.15. 

 
3.2 k-εεεε model 
The k-ε model based on Chain near wall correction [36], and Sarkar [11] and Zemman [12] compressibility 
corrections, are: 
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3.1,1,09.0,92.1,44.1 21 =σ=σ=== εµεε kCCC   
 
where, in both k-ε and k-ω models, 0ε , µf , 1εf , 2εf  are given in [36] and the source terms 1cπ , 2cπ , 3cπ  are 
given in [11] and [12].  
 
3.3 k-ωωωω model 
The equations for k and ω with Wilcox near wall correction, and Sarkar [11] and Zemman [12] compressibility 
corrections used by Wilcox [18], are: 
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3.4 k-l model 
 The final form of the modified k-l equations and their constants, according to Ahmadikia [27], are: 
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The compressibility corrections [26], are: 
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and the modifications for transition region, Warren et al [37], are: 
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where, 09.0CD = , a=0.04-0.06, b=0.23, eP U94.0U = . 
 
3.5 k-ζζζζ model 
The modeled k-ζ equations, according to Robinson and Hassan [34], are: 
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where, the correction in the fourth term on the right-hand side of k equation is due to the axisymmetric effects and : 
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The other terms in the equations of ζ are modeled as: 
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µc  is equal to 0.09 and the other constants are given in table (1). 
 

 
Table 1. Constants for ζ−k  model 

 

1c  0.6 
5β  2.37 σζ 0.685 

Cζ1 1.35 [31], 2.1 [34] 
6β  0.1 σR 0.5  

kc  20 
7β  0.75 [30], 1.5[34] σp 0.13 

3α  0.35 
8β  1.15  σρ 80.0  

β4 0.42 σk 0.555 δ  0.1 
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4. NUMERICAL SOLUTION 
 
The governing equations are transferred into a body 
fitted coordinate system, and solved numerically. The 
equations of motion are linearized using the Newton 
approach and discretized by the control volume 
approach. Two different codes were prepared. The first 
one used the Reimann Roe [38] flux splitting method. In 
this method, the convective fluxes are approximated by 
Reimann Roe’s method, and diffusion fluxes 
approximated by second-order central difference 
scheme. To prevent entropy deflection around the sonic 
lines, Harten and Hyman [39] entropy conditions are 
used. To prevent numerical oscillations, the minimum 
of two-gradient limiter is employed, Hirsh [40]. The 
second code used the Van Leer [41] flux splitting 
method. The fluxes at the surfaces of the control volume 
were approximated by second order accurate method 
and in order to prevent oscillations around the shock 
waves or any other large gradient regions, the Koren 
[42] limiter was used. Finally the equations were solved 
by using ADI method. The computational grid is 
generated algebraically by using the Eiseman method 
[43]. 
 

5. RESULTS 
 
The computer codes were tested with several simple 
flows to ensure that they worked properly. The results 
of the testing of the first code are presented by 
Ahmadikia and Shirani [44]. This code was first used to 
simulate laminar flow with several different limiter and 
entropy conditions. The results were compared with 
experimental data. As a result, the minimum two-
gradient limiter and Harten and Hyman [39] entropy 

condition, which produced better results for the cases 
studied, were chosen and used in this paper. Simulating 
channel flow with circular bump and shock tube were 
used to test the second code. The grid study in both 
codes was also done.  Finally the following five 
supersonic turbulent flows were simulated and Baldwin-
Lomax, k-l, k-ε, k-ω and k-ζ models turbulence models 
were tested. The first and last cases below were 
simulated by the second code and the other two cases 
were simulated by the first code. 
 
5.1 Mixing Layers 
In this flow k-ε and k-ζ were used and tested to simulate 
the flow. The flow conditions were used to simulate a 
supersonic mixing layer are M1=1.96, M2=0.37, 
Mc=0.64, u2/u1=0.25, To1=To2=276K, ρ2/ρ1=0.58, 
p1=p2=100KPa. 
Fig. (1) shows the velocity distribution and Fig. (2) 
shows the turbulent kinetic energy. Although the mean 
velocity distribution are close to the experimental data 
[45], but the turbulent kinetic energy in k-ε is 
inaccurate. When the compressibility effects are added 
to the models, the results for k-ε are closer to the 
experimental data. But the k-ζ model results are closer 
to the experimental results. Table (2) indicates the 
results for different models. As shown in the figures and 
the table, the k-ζ model produces much better results 
than the k-ε model. Among the k-ε models, Sarkar 
compressibility correction produces better results.  
 

 
 
 

 
Table 2. Relative differences between present results and experimental [45] results (in percent), 

 Spreading rate Reynolds stress Turbulent kinetic energy 
k-ε without correction 17 39 90 

k-ε with Sarkar correction 5 16 17 

k-ε with Zemman correction 6.5 16 61 

k-ε with Wilcox correction 2.5 16 75 

k-ζ model 2 4 10 
 

5.2 Flow Behind Axisymmetric Body 
Flow behind an axisymmetric body with diameter of 
6.35 cm have been simulated using and Baldwin-
Lomax, k-ε, k-ω and k-l models and the results 
compared with the data obtained by Herrin and Duttin 
[46]. The inflow properties are M∞ =2.46, T0 =294K, p0 
= 515 kPa and the free stream turbulent intensity is one 
percent of free stream velocity. In this case 120×70 grid 
points were used. Fig. (3) shows the Mach number 
contours. As shown, the algebraic turbulence model 
does not produce good results. It shows that a shock 
wave is present in the wake region, while neither the 
experimental results nor the numerical simulation 
obtained from two-equation models produce such shock 
wave.  

   The flow configuration and the location of 
reattachment point shows that k-l and k-ε models 
produce better results and are closer to the experimental 
results compared to the k-ω and Baldwin-Lomax 
models.  
The axial velocity along the axis of symmetric is shown 
in Fig. (4). The locations of reattachment point that are 
calculated by k-ε and k-ω models are 2.9 and 1.9 
percent less than the experimental results respectively. 
These values are 1.9 and 31 percent of the experimental 
results when k-l and algebraic models were used, 
respectively. 
 
   Fig. (5) shows the results when the modified version 
of Baldwin-Lomax model, eq. (10), was used. The 
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results were compared with the original Baldwin-Lomax 
model. As shown with this modification, much better 
results, especially for the location of the reattachment 
point, are obtained.      
 
5.3 Under-expanded Supersonic Jet 
In this example, an under-expanded supersonic jet is 
simulated and k-ε and k-ξ models were tested. The flow 
conditions are Rj=25mm, Mj=2, Toj=T∞=293K, 
Tj=163K, p∞=10135Kpa, pj/p∞=1.45, R2=8Rj, and the 
number of grid points 39000. Since the jet pressure is 
smaller than the ambient pressure, a series of shock and 
expansion waves are produced. The waves are confined 
in the supersonic region. Fig. (6) shows the density 
contours, when the k-ε is used. As mixing layer grows, 
the expansion and shock waves become weaker because 
of viscosity effect. Fig. (7) compares the pressure 
distribution on the centerline using k-ε model and the 
Seiner’s experimental data [17] and [18]. When the k-ζ 
model is used, Fig (8), better results are obtained.  
Fig. (9) compares the results obtained from the k-ε 
model with and without compressibility correction. As 
shown, when the compressibility effects are neglected in 
the model, the mixing layer grows faster and the shock 
waves are damped in shorter distance. Fig. (10) shows 
the distribution of Mach number as a function of radius 
at different axial locations. These results are obtained 
using k-ε and k-ζ models and compared with the 
experimental data. The results also indicate that the k-ζ 
model produces much more accurate data. Finally, Fig. 
(11) shows the x-component of turbulence intensity at 
R=Rj, with different models and compared with the 
experimental data. The results show that the k-ζ model 
is the most accurate model. It can also be seen (not 
shown here) that Sarkar modifications are better than 
Wilcox’s. 
 
5.4 Flow over Hollow Cylinder Flare 
In this flow, which shock waves and boundary layers 
interact, Baldwin-Lomax, k-ω and k-l models are 
employed and tested. Fig. (12) shows the corresponding 
geometry and the inflow conditions. The grid size is 
160×60. Fig. (13) shows pressure contours in the region 
near the corner. These results are obtained for k-l 
model. It shows the locations of separation point, 
reattachment point, separated region and shock waves. 
The simulated surface pressure distributions obtained by 
three different models and also corresponding 
experimental results obtained by Joulot [47] are shown 
in Fig. (14). It shows that the modifications made in k-l 
equations based on the Warren et al. [37] ideas, produce 
good results and predict the location of separation point 
and distribution of pressure well.  
Fig. (15) shows the distribution of Stanton number 
obtained by using three different models and compared 
with experimental [47] and others numerical [48] data. 
As shown in Fig. (15), all three models predict the 
Stanton number well at the transition region and the 
separation point. But the Baldwin-Lomax model gives 
less accurate results as expected.  

The difference between the numerical results and the 
experimental ones may be due to the shortcoming of the 
turbulence models. But it could also be due to the three-
dimensionality and unsteadiness nature of the problem, 
numerical method especially with the use of limiters, 
grid configuration and the large value of the +y  on the 
first node near the wall at the separation region. 
 

6. Conclusions 
 
   In this work, five different turbulent models were 
tested in rather complicated supersonic flows with 
different flow characteristics and phenomena and the 
results were compared with experimental data. The two 
new equations, k-ζ and k-l models, specially the k-ζ 
model, give better results than the other models. But the 
k-ζ model is a complicated model with many constants 
in it. The k-l model is simpler and easier to work with, 
and it is a promising two-equation model. The 
compressibility corrections in the models are needed to 
get better results. 
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